Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 923: 171374, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432374

RESUMO

Heavy metals pose a potential health risk to humans when they enter the organism. Renal excretion is one of the elimination pathways and, therefore, investigations with kidney cells are of particular interest. In the present study, the effects of Ba(II), Eu(III), and U(VI) on rat and human renal cells were investigated in vitro. A combination of microscopic, biochemical, analytical, and spectroscopic methods was used to assess cell viability, cell death mechanisms, and intracellular metal uptake of exposed cells as well as metal speciation in cell culture medium and inside cells. For Eu(III) and U(VI), cytotoxicity and intracellular uptake are positively correlated and depend on concentration and exposure time. An enhanced apoptosis occurs upon Eu(III) exposure whereas U(VI) exposure leads to enhanced apoptosis and (secondary) necrosis. In contrast to that, Ba(II) exhibits no cytotoxic effect at all and its intracellular uptake is time-independently very low. In general, both cell lines give similar results with rat cells being more sensitive than human cells. The dominant binding motifs of Eu(III) in cell culture medium as well as cell suspensions are (organo-) phosphate groups. Additionally, a protein complex is formed in medium at low Eu(III) concentration. In contrast, U(VI) forms a carbonate complex in cell culture medium as well as each one phosphate and carbonate complex in cell suspensions. Using chemical microscopy, Eu(III) was localized in granular, vesicular compartments near the nucleus and the intracellular Eu(III) species equals the one in cell suspensions. Overall, this study contributes to a better understanding of the interactions of Ba(II), Eu(III), and U(VI) on a cellular and molecular level. Since Ba(II) and Eu(III) serve as inactive analogs of the radioactive Ra(II) and Am(III)/Cm(III), the results of this study are also of importance for the health risk assessment of these radionuclides.


Assuntos
Rim , Metais Pesados , Humanos , Animais , Ratos , Células HEK293 , Carbonatos , Fosfatos
2.
Environ Sci Pollut Res Int ; 31(5): 7227-7245, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157180

RESUMO

Characterizing uranium (U) mine water is necessary to understand and design an effective bioremediation strategy. In this study, water samples from two former U-mines in East Germany were analysed. The U and sulphate (SO42-) concentrations of Schlema-Alberoda mine water (U: 1 mg/L; SO42-: 335 mg/L) were 2 and 3 order of magnitude higher than those of the Pöhla sample (U: 0.01 mg/L; SO42-: 0.5 mg/L). U and SO42- seemed to influence the microbial diversity of the two water samples. Microbial diversity analysis identified U(VI)-reducing bacteria (e.g. Desulfurivibrio) and wood-degrading fungi (e.g. Cadophora) providing as electron donors for the growth of U-reducers. U-bioreduction experiments were performed to screen electron donors (glycerol, vanillic acid, and gluconic acid) for Schlema-Alberoda U-mine water bioremediation purpose. Thermodynamic speciation calculations show that under experimental conditions, U(VI) is not coordinated to the amended electron donors. Glycerol was the best-studied electron donor as it effectively removed 99% of soluble U, 95% of Fe, and 58% of SO42- from the mine water, probably by biostimulation of indigenous microbes. Vanillic acid removed 90% of U, and no U removal occurred using gluconic acid.


Assuntos
Gluconatos , Urânio , Urânio/análise , Água/análise , Biodegradação Ambiental , Glicerol , Ácido Vanílico , Oxirredução
3.
Inorg Chem ; 62(50): 20699-20709, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37702665

RESUMO

To pursue the design of in vivo stable chelating systems for radiometals, a concise and straightforward method toolbox was developed combining NMR, isothermal titration calorimetry (ITC), and europium time-resolved laser-induced fluorescence spectroscopy (Eu-TRLFS). For this purpose, the macropa chelator was chosen, and Lu3+, La3+, Pb2+, Ra2+, and Ba2+ were chosen as radiopharmaceutically relevant metal ions. They differ in charge (2+ and 3+) and coordination properties (main group vs lanthanides). 1H NMR was used to determine four pKa values (±0.15; carboxylate functions, 2.40 and 3.13; amino functions, 6.80 and 7.73). Eu-TRLFS was used to validate the exclusive existence of the 1:1 Mn+/ligand complex in the chosen pH range at tracer level concentrations. ITC measurements were accomplished to determine the resulting stability constants of the desired complexes, with log K values ranging from 18.5 for the Pb-mcp complex to 7.3 for the Lu-mcp complex. Density-functional-theory-calculated structures nicely mirror the complexes' order of stabilities by bonding features. Radiolabeling with macropa using ligand concentrations from 10-3 to 10-6 M was accomplished by pointing out the complex formation and stability (212Pb > 133La > 131Ba ≈ 224Ra > 177Lu) by means of normal-phase thin-layer chromatography analyses.


Assuntos
Elementos da Série dos Lantanídeos , Compostos Radiofarmacêuticos , Ligantes , Chumbo , Termodinâmica , Elementos da Série dos Lantanídeos/química , Quelantes/química , Európio/química
4.
Ecotoxicol Environ Saf ; 264: 115474, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716067

RESUMO

Microorganisms show a high affinity for trivalent actinides and lanthanides, which play an important role in the safe disposal of high-level radioactive waste as well as in the mining of various rare earth elements. The interaction of the lanthanide Eu(III) with the sulfate-reducing microorganism Desulfosporosinus hippei DSM 8344T, a representative of the genus Desulfosporosinus that naturally occurs in clay rock and bentonite, was investigated. Eu(III) is often used as a non-radioactive analogue for the trivalent actinides Pu(III), Am(III), and Cm(III), which contribute to a major part of the radiotoxicity of the nuclear waste. D. hippei DSM 8344T showed a weak interaction with Eu(III), most likely due to a complexation with lactate in artificial Opalinus Clay pore water. Hence, a low removal of the lanthanide from the supernatant was observed. Scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy revealed a bioprecipitation of Eu(III) with phosphates potentially excreted from the cells. This demonstrates that the ongoing interaction mechanisms are more complex than a simple biosorption process. The bioprecipitation was also verified by luminescence spectroscopy, which showed that the formation of the Eu(III) phosphate compounds starts almost immediately after the addition of the cells. Moreover, chemical microscopy provided information on the local distribution of the different Eu(III) species in the formed cell aggregates. These results provide first insights into the interaction mechanisms of Eu(III) with sulfate-reducing bacteria and contribute to a comprehensive safety concept for a high-level radioactive waste repository, as well as to a better understanding of the fate of heavy metals (especially rare earth elements) in the environment.


Assuntos
Elementos da Série Actinoide , Elementos da Série dos Lantanídeos , Resíduos Radioativos , Európio/química , Luminescência , Sulfatos , Argila
5.
Analyst ; 148(19): 4668-4676, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37646162

RESUMO

The extensive use of lanthanides in science, industry and high-technology products is accompanied by an anthropogenic input of rare earth elements into the environment. Knowledge of a metal's environmental fate is essential for reasonable risk assessment and remediation approaches. In the present study, Eu(III) was representatively used as a luminescent probe to study the chemical environment and to elucidate the molecular interactions of lanthanides with a suspension cell culture of Nicotiana tabacum BY-2. Biochemical methods were combined with luminescence spectroscopy, two-dimensional microspectroscopic mappings, and data deconvolution methods to resolve the bioassociation behavior and spatial distribution of Eu(III) in plant cells. BY-2 cells were found to gradually take up the metal after exposure to 100 µM Eu(III) without significant loss of viability. Time-resolved luminescence measurements were used to specify the occurrence of Eu(III) species as a function of time, revealing the transformation of an initial Eu(III) species into another after 24 h exposure. Chemical microscopy and subsequent iterative factor analysis reveal the presence of four distinct Eu(III) species located at different cellular compartments, e.g., the cell nucleus, nucleolus and cell walls, which could be assigned to intracellular binding motifs. In addition, a special type of bioaccumulation occurs through the formation of a Eu(III)-containing oxalate biomineral, which is already formed within the first 24 hours after metal exposure. Oxalate crystals were also obtained in analogous experiments with Gd and Sm. These results indicate that tobacco BY-2 cells induce the precipitation of metal oxalate biominerals for detoxification of lanthanides, although they also bind to other cellular ligands at the same time.


Assuntos
Elementos da Série dos Lantanídeos , Técnicas de Cultura de Células , Nucléolo Celular , Oxalatos
6.
Molecules ; 28(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37375436

RESUMO

The complex formation of Eu(III) and Cm(III) was studied via tetradentate, hexadentate, and octadentate coordinating ligands of the aminopolycarboxylate family, viz., nitrilotriacetate (NTA3-), ethylenediaminetetraacetate (EDTA4-), and ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetate (EGTA4-), respectively. Based on the complexones' pKa values obtained from 1H nuclear magnetic resonance (NMR) spectroscopic pH titration, complex formation constants were determined by means of the parallel-factor-analysis-assisted evaluation of Eu(III) and Cm(III) time-resolved laser-induced fluorescence spectroscopy (TRLFS). This was complemented by isothermal titration calorimetry (ITC), providing the enthalpy and entropy of the complex formation. This allowed us to obtain genuine species along with their molecular structures and corresponding reliable thermodynamic data. The three investigated complexones formed 1:1 complexes with both Eu(III) and Cm(III). Besides the established Eu(III)-NTA 1:1 and 1:2 complexes, we observed, for the first time, the existence of a Eu(III)-NTA 2:2 complex of millimolar metal and ligand concentrations. Demonstrated for thermodynamic studies on Eu(III) and Cm(III) interaction with complexones, the utilized approach is commonly applicable to many other metal-ligand systems, even to high-affinity ligands.

7.
Chem Commun (Camb) ; 59(59): 9066-9069, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37382581

RESUMO

We present the extremophilic bacterium Methylacidiphilum fumariolicum SolV as a platform for the recovery of rare earth elements (REE). Strain SolV is able to selectively extract the light REE from artificial industrial waste sources, natural REE-containing and post-mining waters. Upscaling, different media composition and accumulation over several cycles were successfully implemented, underlining the potential for bio-recovery of REE.


Assuntos
Metais Terras Raras , Verrucomicrobia
8.
Molecules ; 28(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298946

RESUMO

Etidronic acid (1-Hydroxyethylidene-1,1-diphosphonic acid, HEDP, H4L) is a proposed decorporation agent for U(VI). This paper studied its complex formation with Eu(III), an inactive analog of trivalent actinides, over a wide pH range, at varying metal-to-ligand ratios (M:L) and total concentrations. Combining spectroscopic, spectrometric, and quantum chemical methods, five distinct Eu(III)-HEDP complexes were found, four of which were characterized. The readily soluble EuH2L+ and Eu(H2L)2- species with log ß values of 23.7 ± 0.1 and 45.1 ± 0.9 are formed at acidic pH. At near-neutral pH, EuHL0s forms with a log ß of ~23.6 and, additionally, a most probably polynuclear complex. The readily dissolved EuL- species with a log ß of ~11.2 is formed at alkaline pH. A six-membered chelate ring is the key motif in all solution structures. The equilibrium between the Eu(III)-HEDP species is influenced by several parameters, i.e., pH, M:L, total Eu(III) and HEDP concentrations, and time. Overall, the present work sheds light on the very complex speciation in the HEDP-Eu(III) system and indicates that, for risk assessment of potential decorporation scenarios, side reactions of HEDP with trivalent actinides and lanthanides should also be taken into account.


Assuntos
Európio , Elementos da Série dos Lantanídeos , Európio/química , Ácido Etidrônico/química , Análise Espectral , Concentração de Íons de Hidrogênio
9.
Angew Chem Int Ed Engl ; 62(31): e202303669, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37074219

RESUMO

Certain f-block elements-the lanthanides-have biological relevance in the context of methylotrophic bacteria. The respective strains incorporate these 4 f elements into the active site of one of their key metabolic enzymes, a lanthanide-dependent methanol dehydrogenase. In this study, we investigated whether actinides, the radioactive 5 f elements, can replace the essential 4 f elements in lanthanide-dependent bacterial metabolism. Growth studies with Methylacidiphilum fumariolicum SolV and the Methylobacterium extorquens AM1 ΔmxaF mutant demonstrate that americium and curium support growth in the absence of lanthanides. Moreover, strain SolV favors these actinides over late lanthanides when presented with a mixture of equal amounts of lanthanides together with americium and curium. Our combined in vivo and in vitro results establish that methylotrophic bacteria can utilize actinides instead of lanthanides to sustain their one-carbon metabolism if they possess the correct size and a +III oxidation state.


Assuntos
Elementos da Série dos Lantanídeos , Methylobacterium extorquens , Elementos da Série dos Lantanídeos/metabolismo , Amerício , Cúrio , Metanol/metabolismo , Methylobacterium extorquens/metabolismo , Proteínas de Bactérias/metabolismo
10.
Ecotoxicol Environ Saf ; 254: 114741, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36950990

RESUMO

For the reliable safety assessment of repositories of highly radioactive waste, further development of the modelling of radionuclide migration and transfer in the environment is necessary, which requires a deeper process understanding at the molecular level. Eu(III) is a non-radioactive analogue for trivalent actinides, which contribute heavily to radiotoxicity in a repository. For in-depth study of the interaction of plants with trivalent f elements, we investigated the uptake, speciation, and localization of Eu(III) in Brassica napus plants at two concentrations, 30 and 200 µM, as a function of the incubation time up to 72 h. Eu(III) was used as luminescence probe for combined microscopy and chemical speciation analyses of it in Brassica napus plants. The localization of bioassociated Eu(III) in plant parts was explored by spatially resolved chemical microscopy. Three Eu(III) species were identified in the root tissue. Moreover, different luminescence spectroscopic techniques were applied for an improved Eu(III) species determination in solution. In addition, transmission electron microscopy combined with energy-dispersive X-ray spectroscopy was used to localize Eu(III) in the plant tissue, showing Eu-containing aggregates. By using this multi-method setup, a profound knowledge on the behavior of Eu(III) within plants and changes in its speciation could be obtained, showing that different Eu(III) species occur simultaneously within the root tissue and in solution.


Assuntos
Brassica napus , Európio , Európio/química , Análise Espectral
11.
Sci Total Environ ; 875: 162593, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889400

RESUMO

Microbial U(VI) reduction influences uranium mobility in contaminated subsurface environments and can affect the disposal of high-level radioactive waste by transforming the water-soluble U(VI) to less mobile U(IV). The reduction of U(VI) by the sulfate-reducing bacterium Desulfosporosinus hippei DSM 8344T, a close phylogenetic relative to naturally occurring microorganism present in clay rock and bentonite, was investigated. D. hippei DSM 8344T showed a relatively fast removal of uranium from the supernatants in artificial Opalinus Clay pore water, but no removal in 30 mM bicarbonate solution. Combined speciation calculations and luminescence spectroscopic investigations showed the dependence of U(VI) reduction on the initial U(VI) species. Scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed uranium-containing aggregates on the cell surface and some membrane vesicles. By combining different spectroscopic techniques, including UV/Vis spectroscopy, as well as uranium M4-edge X-ray absorption near-edge structure recorded in high-energy-resolution fluorescence-detection mode and extended X-ray absorption fine structure analysis, the partial reduction of U(VI) could be verified, whereby the formed U(IV) product has an unknown structure. Furthermore, the U M4 HERFD-XANES showed the presence of U(V) during the process. These findings offer new insights into U(VI) reduction by sulfate-reducing bacteria and contribute to a comprehensive safety concept for a repository for high-level radioactive waste.

12.
Chemosphere ; 313: 137252, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36403807

RESUMO

A combination of biochemical preparation methods with microscopic, spectroscopic, and mass spectrometric analysis techniques as contemplating state of the art application, was used for direct visualization, localization, and chemical identification of europium in plants. This works illustrates the chemical journey of europium (Eu(III)) through winter rye (Secale cereale L.), providing insight into the possibilities of speciation for Rare Earth Elements (REE) and trivalent f-elements. Kinetic experiments of contaminated plants show a maximum europium concentration in Secale cereale L. after four days. Transport of the element through the vascular bundle was confirmed with Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDS). For chemical speciation, plants were grown in a liquid nutrition medium, whereby Eu(III) species distribution could be measured by mass spectrometry and luminescence measurements. Both techniques confirm the occurrence of Eu malate species in the nutrition medium, and further analysis of the plant was performed. Luminescence results indicate a change in Eu(III) species distribution from root tip to plant leaves. Microscopic analysis show at least three different Eu(III) species with potential binding to organic and inorganic phosphate groups and a Eu(III) protein complex. With plant root extraction, further europium species could be identified by using Electrospray Ionization Mass Spectrometry (ESI MS). Complexation with malate, citrate, a combined malate-citrate ligand, and aspartate was confirmed mostly in a 1:1 stoichiometry (Eu:ligand). The combination of the used analytical techniques opens new possibilities in direct species analysis, especially regarding to the understanding of rare earth elements (REE) uptake in plants. This work provides a contribution in better understanding of plant mechanisms of the f-elements and their species uptake.


Assuntos
Európio , Secale , Európio/química , Malatos , Ligantes , Microscopia Eletrônica de Varredura , Espectrometria de Massas por Ionização por Electrospray , Citratos
13.
Inorg Chem Front ; 9(16): 4009-4021, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36091973

RESUMO

Lanmodulin (LanM), a naturally lanthanide (Ln)-binding protein with a remarkable selectivity for Lns over Ca(ii) and affinities in the picomolar range, is an attractive target to address challenges in Ln separation. Why LanM has such a high selectivity is currently not entirely understood; both specific amino acid sequences of the EF-Hand loops and cooperativity effects have been suggested. Here, we removed the effect of cooperativity and synthesised all four 12-amino acid EF-Hand loop peptides, and investigated their affinity for two Lns (Eu(iii) and Tb(iii)), the actinide Cm(iii) and Ca(ii). Using isothermal titration calorimetry and time-resolved laser fluorescence spectroscopy (TRLFS) combined with parallel factor analysis, we show that the four short peptides behave very similarly, having affinities in the micromolar range for Eu(iii) and Tb(iii). Ca(ii) was shown not to bind to the peptides, which was verified with circular dichroism spectroscopy. This technique also revealed an increase in structural organisation upon Eu(iii) addition, which was supported by molecular dynamics simulations. Lastly, we put Eu(iii) and Cm(iii) in direct competition using TRLFS. Remarkably, a slightly higher affinity for Cm(iii) was found. Our results demonstrate that the picomolar affinities in LanM are largely an effect of pre-structuring and therefore a reduction of flexibility in combination with cooperative effects, and that all EF-Hand loops possess similar affinities when detached from the protein backbone, albeit still retaining the high selectivity for lanthanides and actinides over calcium.

14.
Sci Total Environ ; 851(Pt 2): 158160, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988601

RESUMO

Europium, as an easy-to-study analog of the trivalent actinides, is of particular importance for studying the behavior of lanthanides and actinides in the environment. Since different soil organisms can influence the migration behavior of these elements, a detailed knowledge of these interaction mechanisms is important. The aim of this study was to investigate the interaction of mycelia of selected wood-inhabiting (S. commune, P. ostreatus, L. tigrinus) and soil-inhabiting fungi (L. naucinus) with Eu(III). In addition to determining the Eu(III) complexes in the sorption solution, the formed Eu(III) fungal species were characterized using scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy, chemical microscopy in combination with the time-resolved laser-induced fluorescence spectroscopy. Our data show that S. commune exhibited significantly higher Eu(III) binding capacity in comparison to the other fungi. Depending on fungal strain, the metal was immobilized on the cell surface, in the cell membranes, and within the membranes of various organelles, or in the cytoplasm in some cases. During the bioassociation process two different Eu(III) fungal species were formed in all investigated fungal strain. The phosphate groups of organic ligands were identified as being important functional groups to bind Eu(III) and thus immobilize the metal in the fungal matrix. The information obtained contributes to a better understanding of the role of fungi in migration, removal or retention mechanisms of rare earth elements and trivalent actinides in the environment.


Assuntos
Elementos da Série Actinoide , Elementos da Série dos Lantanídeos , Európio/química , Ligantes , Elementos da Série Actinoide/química , Espectrometria de Fluorescência , Micélio , Fosfatos , Solo
15.
J Hazard Mater ; 437: 129376, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35897184

RESUMO

The U(VI) bioassociation on Magnetospirillum magneticum AMB-1 cells was investigated using a multidisciplinary approach combining wet chemistry, microscopy, and spectroscopy methods to provide deeper insight into the interaction of U(VI) with bioligands of Gram-negative bacteria for a better molecular understanding. Our findings suggest that the cell wall plays a prominent role in the bioassociation of U(VI). In time-dependent bioassociation studies, up to 95 % of the initial U(VI) was removed from the suspension and probably bound on the cell wall within the first hours due to the high removal capacity of predominantly alive Magnetospirillum magneticum AMB-1 cells. PARAFAC analysis of TRLFS data highlights that peptidoglycan is the most important ligand involved, showing a stable immobilization of U(VI) over a wide pH range with the formation of three characteristic species. In addition, in-situ ATR FT-IR reveals the predominant strong binding to carboxylic functionalities. At higher pH polynuclear species seem to play an important role. This comprehensive molecular study may initiate in future new remediation strategies on effective immobilization of U(VI). In combination with the magnetic properties of the bacteria, a simple technical water purification process could be realized not only for U(VI), but probably also for other heavy metals.


Assuntos
Urânio , Parede Celular , Magnetospirillum , Peptidoglicano , Espectroscopia de Infravermelho com Transformada de Fourier , Urânio/química
16.
J Hazard Mater ; 439: 129520, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35908404

RESUMO

Daucus carota suspension cells showed a high affinity towards Eu(III) and U(VI) based on a single-step bioassociation process with an equilibrium after 48-72 h. Cells responded with an increased metabolic activity towards heavy metal stress. Luminescence spectroscopy pointed to multiple species for both f-block elements in the culture media, providing initial hints of their interaction with cells and released metabolites. Using nuclear magnetic resonance spectroscopy, we could prove that malate, as an released metabolite in the culture medium, was found to complex with U. Luminescence spectroscopy also showed that Eu(III)-EDTA species are interacting with the cells. Furthermore, Eu(III) and U(VI) coordination is dominated by phosphate groups provided by the cells. We found that Ca ion channels of D. carota cells were involved in the uptake of U(VI), which led to a bioprecipitation of U(VI) in the vacuole of the cells, most probably as uranyl(VI) phosphates along with an intracellular sorption of U(VI) on biomembranes by lipid structures. Eu(III) could be found locally concentrated in the cell wall and in the cytoplasm with a co-localization with phosphorous and oxygen.


Assuntos
Daucus carota , Urânio , Poluentes Radioativos da Água , Daucus carota/metabolismo , Fosfatos , Células Vegetais/metabolismo , Suspensões , Urânio/química , Poluentes Radioativos da Água/análise
17.
Phys Chem Chem Phys ; 24(25): 15397-15405, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35704886

RESUMO

Pyrroloquinoline quinone (PQQ) is a redox cofactor in calcium- and lanthanide-dependent alcohol dehydrogenases that has been known and studied for over 40 years. Despite its long history, many questions regarding its fluorescence properties, speciation in solution and in the active site of alcohol dehydrogenase remain open. Here we investigate the effects of pH and temperature on the distribution of different PQQ species (H3PQQ to PQQ3- in addition to water adducts and in complex with lanthanides) with NMR and UV-Vis spectroscopy as well as time-resolved laser-induced fluorescence spectroscopy (TRLFS). Using a europium derivative from a new, recently-discovered class of lanthanide-dependent methanol dehydrogenase (MDH) enzymes, we utilized two techniques to monitor Ln binding to the active sites of these enzymes. Employing TRLFS, we were able to follow Eu(III) binding directly to the active site of MDH using its luminescence and could quantify three Eu(III) states: Eu(III) in the active site of MDH, but also in solution as PQQ-bound Eu(III) and in the aquo-ion form. Additionally, we used the antenna effect to study PQQ and simultaneously Eu(III) in the active site.


Assuntos
Elementos da Série dos Lantanídeos , Cofator PQQ , Oxirredutases do Álcool/química , Metanol/química , Cofator PQQ/química
18.
Nat Chem ; 14(4): 407-416, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35165426

RESUMO

It has long been proposed that phase-separated compartments can provide a basis for the formation of cellular precursors in prebiotic environments. However, we know very little about the properties of coacervates formed from simple peptides, their compatibility with ribozymes or their functional significance. Here we assess the conditions under which functional ribozymes form coacervates with simple peptides. We find coacervation to be most robust when transitioning from long homopeptides to shorter, more pre-biologically plausible heteropeptides. We mechanistically show that these RNA-peptide coacervates display peptide-dependent material properties and cofactor concentrations. We find that the interspacing of cationic and neutral amino acids increases RNA mobility, and we use isothermal calorimetry to reveal sequence-dependent Mg2+ partitioning, two critical factors that together enable ribozyme activity. Our results establish how peptides of limited length, homogeneity and charge density facilitate the compartmentalization of active ribozymes into non-gelating, magnesium-rich coacervates, a scenario that could be applicable to cellular precursors with peptide-dependent functional phenotypes.


Assuntos
RNA Catalítico , Magnésio/química , Peptídeos/química , RNA/química , RNA Catalítico/metabolismo
19.
J Biol Inorg Chem ; 27(2): 249-260, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35150337

RESUMO

The interaction between Eu(III) ion and different pH buffers, popular in biology and biochemistry, viz. HEPES, PIPES, MES, MOPS, and TRIS, has been studied by solution nuclear magnetic resonance spectroscopy (NMR) and time-resolved laser-induced fluorescence spectroscopy (TRLFS) techniques. The Good's buffers reveal non-negligible interaction with Eu(III) as determined from their complex stability constants, where the sites of interaction are the morpholine and piperazine nitrogen atoms, respectively. In contrast, TRIS buffer shows practically no affinity towards Eu(III). Therefore, when investigating lanthanides, TRIS buffer should be preferred over Good's buffers.


Assuntos
Európio , Elementos da Série dos Lantanídeos , Soluções Tampão , Concentração de Íons de Hidrogênio , Íons , Trometamina
20.
Analyst ; 146(22): 6741-6745, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34570845

RESUMO

Chemical microscopy combines high-resolution emission spectra with Abbe-limited spatial resolution and is used for studies of inhomogeneous samples at the (sub-)micronscale. The spatial distinction of multiple Eu(III) coordination sites allows for a comprehensive understanding of environmental samples and highlights the applicability of Eu(III) as a molecular probe in medicine and biology.


Assuntos
Microscopia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...